
www.umbc.edu

CMSC201
Computer Science I for Majors

Lecture 02 – Algorithmic Thinking

Prof. Jeremy Dixon

Based on slides by Shawn Lupoli and Max Morawski at UMBC

www.umbc.edu

Last Class We Covered

• Syllabus

– Grading scheme, expectations, etc.

– Academic Integrity Policy

• Computer System Components

• Binary numbers

– Converting between binary and decimal

• Algorithmic thinking

– Making sandwiches for aliens

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To practice thinking algorithmically

• To understand and be able to implement
proper program development

• To start learning about control structures

• To be able to express an algorithm
using a flow chart

www.umbc.edu

What is an Algorithm?

• Steps used to solve a problem

• Problem must be

– Well defined

– Fully understood
by the programmer

• Steps must be

– Ordered

– Unambiguous

– Complete

www.umbc.edu

Developing an Algorithm

www.umbc.edu

Program Development

1. Understand the problem

2. Represent your solution (your algorithm)

– Pseudocode

– Flowchart

3. Implement the algorithm in a program

4. Test and debug your program

www.umbc.edu

Step 1: Understanding the Problem

• Input

– What information or data are you given?

• Process

– What must you do with the information/data?

– This is your algorithm!

• Output

– What are your deliverables?

www.umbc.edu

“Weekly Pay” Example

• Create a program to calculate the
weekly pay of an hourly employee

– What is the input, process, and output?

• Input: pay rate and number of hours

• Process: multiply pay rate by number of hours

• Output: weekly pay

www.umbc.edu

Step 2: Represent the Algorithm

• Can be done with flowchart or pseudocode

• Flowchart

– Symbols convey different types of actions

• Pseudocode

– A cross between code and plain English

• One may be easier for you – use that one

www.umbc.edu

Step 2A: Pseudocode

• Start with a plain English description, then…

1. Variables: hours, rate, pay

2. Display “Number of hours worked: ”

3. Get hours

4. Display “Amount paid per hour: ”

5. Get rate

6. pay = hours * rate

7. Display “The pay is $” , pay

www.umbc.edu

Flowchart Symbols

Start

End

Start Symbol

End Symbol

Data Processing Symbol

Input/Output

Decision Symbol

Flow Control Arrows

www.umbc.edu

Step 2B: Flowchart

pay = hours * rate

Start

Display “Number
of hours worked: ”

Get hours

Display “Amount
paid per hour: ”

Get rate

Display “The pay
is $ ” , pay

End

www.umbc.edu

Steps 3 and 4: Implementation
and Testing/Debugging

• We’ll cover implementation in detail next class

• Testing and debugging your program involves
identifying errors and fixing them

–We’ll talk about this later today

www.umbc.edu

Algorithms and Language

• Notice that developing the algorithm
didn’t involve any Python at all

– Only pseudocode or a flowchart was needed

–An algorithm can be coded in any language

• All languages have 3 important control
structures we can use in our algorithms

www.umbc.edu

Control Structures

www.umbc.edu

Control Structures

• Structures that control how the program
“flows” or operates, and in which order

• Sequence

• Decision Making

• Looping

www.umbc.edu

Sequence

• One step after another, with no branches

• Already wrote one for “Weekly Pay” problem

• What are some real life examples?

– Dialing a phone number

– Purchasing and paying for groceries

www.umbc.edu

Decision Making

• Selecting one choice from many based
on a specific reason or condition

– If something is true, do A … if it’s not, do B

• What are some real life examples?

– Walking around campus (construction!)

– Choosing where to eat for lunch

www.umbc.edu

Decision Making: Pseudocode

• Answer the question “Is a number positive?”

– Start with a plain English description
1. Variable: num

2. Display “Enter the number: ”

3. Get num

4. If num > 0

5. Display “It is positive”

6. Else

7. Display “It is negative”

www.umbc.edu

Decision Making: Flowchart

Start
Display “Enter
the number: ”

Get num

num > 0

End

Display
“It is positive”

Display
“It is negative”

TRUE FALSE

www.umbc.edu

Looping

• Doing something over and over again

• Combined with decision making

– Otherwise we loop forever (an “infinite loop”)

• What are some real life examples?

– Doing homework problem sets

– Walking up steps

www.umbc.edu

Looping: Pseudocode

• Write an algorithm that counts from 1-20

– Start with a plain English description

1. Variable: num

2. num = 1

3. While num <= 20

4. Display num

5. num = num + 1

6. (End loop)

www.umbc.edu

Looping: Flowchart

Start

End

Display
num

FALSE

num = 1

num
>= 20

TRUE num = num + 1

There’s an error in this
flowchart… do you see it?

www.umbc.edu

Looping: Flowchart

Start

End

Display
num

FALSE

num = 1

num
>= 20

TRUE num = num + 1

www.umbc.edu

Looping: Flowchart

Start

End

Display
num

FALSE

num = 1

TRUE num = num + 1
num
<= 20

www.umbc.edu

Debugging

www.umbc.edu

A Bit of History on “Bugs”

• US Navy lab – September 9, 1947

• Grace Hopper and colleagues are
working on the Harvard Mark II

– Or trying to… it wasn’t working right

• They found a literal bug inside the machine

– Taped the bug (a moth)
into their log book

www.umbc.edu

Errors (“Bugs”)

• Two main classifications of errors

• Syntax errors

– Prevent Python from understanding what to do

• Logical errors

– Cause the program to run incorrectly, or to
not do what you want

www.umbc.edu

Syntax Errors

• “Syntax” is the set of rules followed by a
computer programming language

– Similar to grammar and spelling in English

• Examples of Python’s syntax rules:

– Keywords must be spelled correctly

True and False, not Ture or Flase or Truu

– Quotes and parentheses must be closed:

(“Open and close”)

www.umbc.edu

Syntax Error Examples

• Find the errors in each line of code below:

1 prnit("Hello")

2 print("What"s up? ")

3 print("Aloha!)

4 print("Good Monring")

www.umbc.edu

Syntax Error Examples

• Find the errors in each line of code below:

1 prnit("Hello")

2 print("What"s up? ")

3 print("Aloha!)

4 print("Good Monring")

not actually a
syntax error

www.umbc.edu

Logical Errors

• Logical errors don’t bother Python at all…
they only bother you!

• Examples of logical errors:

– Using the wrong value for something

callMe = “maybe NOT”

– Doing steps in the wrong order

• “Put jelly on bread. Open jelly jar.”

www.umbc.edu

Exercise

• Write an algorithm that asks a user for their
name, then responds with “Hello <NAME>”

• You can use a flowchart or pseudocode

34

Start

End
Data Processing

Input/Output Decision

Flow Control

www.umbc.edu

Exercise #2

• Write an algorithm that asks a user for their
grade, and tells them their letter grade.

A: 100-90 C: 80-70 F: 60-0

B: 90-80 D: 70-60

35

Start

End
Data Processing

Input/Output Decision

Flow Control

www.umbc.edu

Announcements

• Your Lab 1 is an online lab this week!

– Due by this Thursday (Sept 3rd) at 8:59:59 PM

• Homework 1 is also out

– Due by next Tuesday (Sept 8th) at 8:59:59 PM

• Both of these assignments are on Blackboard

